Iterative version
q.size() directly as the number is changing (rather, save it into a local variable size before the for loop/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> res = new ArrayList<>();
Queue<TreeNode> q = new ArrayDeque<>();
if (root != null) q.add(root);
while (!q.isEmpty()) {
int size = q.size();
List<Integer> listLevel = new ArrayList<>();
for (int i = 0; i < size; i++) {
TreeNode cur = q.poll();
listLevel.add(cur.val);
if (cur.left != null) q.add(cur.left);
if (cur.right != null) q.add(cur.right);
}
res.add(listLevel);
}
return res;
}
}
Recursive version
cur is nullres has enough elements to match the depth (only need to check for size() == depth which requires one more level)class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> res = new ArrayList<>();
levelHelper(root, res, 0);
return res;
}
public void levelHelper(TreeNode cur, List<List<Integer>> res, int depth) {
if (cur == null) return;
List<Integer> curLevelList;
if (res.size() == depth) {
curLevelList = new ArrayList<Integer>();
res.add(curLevelList);
} else {
curLevelList = res.get(depth);
}
curLevelList.add(cur.val);
levelHelper(cur.left, res, depth+1);
levelHelper(cur.right, res, depth+1);
}
}
(above)
class Solution {
public List<List<Integer>> levelOrderBottom(TreeNode root) {
List<List<Integer>> res = new ArrayList<>();
Queue<TreeNode> q = new ArrayDeque<>();
if (root != null) q.add(root);
while (!q.isEmpty()) {
List<Integer> curLevel = new ArrayList<>();
int count = q.size();
while (count > 0) {
TreeNode cur = q.poll();
curLevel.add(cur.val);
if (cur.left != null) q.add(cur.left);
if (cur.right != null) q.add(cur.right);
count--;
}
res.add(curLevel);
}
Collections.reverse(res);
return res;
}
}
levelNode list) and add to the result list reslevelNode and add their children (if not null) to nextLevelNode; when done, assign the nextLevelNode list to levelNode and enter the next iteration
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Integer> rightSideView(TreeNode root) {
List<Integer> res = new ArrayList<>();
List<TreeNode> levelNode = new ArrayList<>();
if (root != null) levelNode.add(root);
while (!levelNode.isEmpty()) {
// each loop is one depth/level, no need to count
res.add(levelNode.getLast().val);
List<TreeNode> nextLevelNode = new ArrayList<>();
for (TreeNode node : levelNode) {
if (node.left != null) nextLevelNode.add(node.left);
if (node.right != null) nextLevelNode.add(node.right);
}
levelNode = nextLevelNode;
}
return res;
}
}